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Abstract. The fracture of materials is a catastrophic phenomenon of considerable technological and sci-
entific importance. Here, we analysed experiments designed for industrial applications in order to test the
concept that, in heterogeneous materials such as fiber composites, rocks, concrete under compression and
materials with large distributed residual stresses, rupture is a genuine critical point, i.e., the culmination of
a self-organization of damage and cracking characterized by power law signatures. Specifically, we analyse
the acoustic emissions recorded during the pressurisation of spherical tanks of kevlar or carbon fibers pre-
impregnated in a resin matrix wrapped up around a thin metallic liner (steel or titanium) fabricated and
instrumented by Aérospatiale-Matra Inc. These experiments are performed as part of a routine industrial
procedure which tests the quality of the tanks prior to shipment. We find that the seven acoustic emission
recordings of seven pressure tanks which was brought to rupture exhibit clear acceleration in agreement
with a power law “divergence” expected from the critical point theory. In addition, we find strong evidence
of log-periodic corrections that quantify the intermittent succession of accelerating bursts and quiescent
phases of the acoustic emissions on the approach to rupture. An improved model accounting for the cross-
over from the non-critical to the critical region close to the rupture point exhibits interesting predictive
potential.

PACS. 81.40.Np Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure – 05.70.Jk Critical
point phenomena

1 Plan of the study

In this paper, we first present in Section 2 a brief review
of the “critical rupture” concept with an emphasis on the
role of heterogeneity. Section 3 describes the experimen-
tal systems and the properties of the acoustic emission
time series that we analyse with three theoretical formu-
las derived from the critical rupture concept. We present
a brief justification for these three power laws. Section 4
gives the results obtained on the acoustic emission energy
release rate on seven systems. Section 5 analyses the cu-
mulative energy releases of these seven systems. Section 6
describes the relative merits of the three power law for-
mulas for the prediction of the critical pressure of rupture
and Section 7 concludes.

2 Review of the “critical rupture” concept

2.1 Background

The damage and fracture of materials is of enormous tech-
nological interest due to their economic and human cost.
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b CNRS UMR6622

They cover a wide range of phenomena like, e.g., cracking
of glass, aging of concrete, the failure of fiber networks in
the formation of paper and the breaking of a metal bar
subject to an external load. Failure of composite systems
are of utmost importance in naval, aeronautics and space
industry [1]. By the term composite, we refer to mate-
rials with heterogeneous microscopic structures and also
to assemblages of macroscopic elements forming a super-
structure. Chemical and nuclear plants suffer from crack-
ing due to corrosion either of chemical or radioactive ori-
gin, aided by thermal and/or mechanical stress.

Despite the large amount of experimental data and the
considerable effort that has been undertaken by material
scientists [2], many questions about fracture have not been
answered yet. There is no comprehensive understanding
of rupture phenomena but only a partial classification in
restricted and relatively simple situations. This lack of
fundamental understanding is indeed reflected in the ab-
sence of reliable prediction methods for rupture based on
a suitable monitoring of the stressed system. Not only is
there a lack of theoretical understanding of the reliabil-
ity of a system, but the empirical laws themselves have
often limited value. What we need are models that incor-
porate the underlying physics to identify and use relevant
precursory patterns. Here, we propose innovative steps
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in this direction that are based on two key concepts : the
role of heterogeneity and the possible existence of a hier-
archy of characteristic scales.

Many material ruptures occur by a “one crack” mech-
anism and a lot of effort is being devoted to the under-
standing, detection and prevention of the nucleation of
cracks [3,4]. Exceptions to the “one crack” rupture mech-
anism are heterogeneous materials such as fiber compos-
ites, rocks, concrete under compression and materials with
large distributed residual stresses. The common property
shared by these systems is the existence of large inho-
mogeneities, that often limit the use of effective medium
theories for the elastic and more generally the mechan-
ical properties. In these systems, failure may occur as
the culmination of a progressive damage involving com-
plex interactions between multiple defects and the grow-
ing of micro-cracks. In addition, other relaxation, creep,
ductile, or plastic behaviors, possibly coupled with corro-
sion effects, may come into play. Many important prac-
tical applications involve the coupling between mechanic
and chemical effects with the competition between sev-
eral characteristic time scales. Application of stress may
act as a catalyst of chemical reactions [5] or, reciprocally,
chemical reactions may lead to bond weakening [6] and
thus promote failure. A dramatic example is the aging of
present aircrafts due to repeating loading in a corrosive
environment [7]. The interaction between multiple defects
and the existence of several characteristic scales present
a considerable challenge to the modeling and prediction
of rupture. Those are the systems and problems that will
guide our modeling efforts.

2.2 Previous statistical physics models

2.2.1 Scaling and critical point

The analogy between rupture and criticality has been al-
ready proposed in [8], which analyzed the Young modulus
and stress/strain relationships of various materials as a
function of temperature and damage. This work brought
up the analogy between the fracture/compaction behavior
and that of the liquid/gas phase transition a la van der
Waals.

Motivated by the multi-scale nature of ruptures in het-
erogeneous systems and by analogies with the percola-
tion model [9], de Arcangelis et al. first suggested [10]
in the mid-eighties that rupture of sufficiently heteroge-
neous media would exhibit some universal properties, in
a way possibly similar to critical phase transitions. The
idea was to build on the knowledge accumulated in sta-
tistical physics on the so-called N−body problem and co-
operative effects in order to describe multiple interactions
between defects. However, most of the models were ex-
tremely naive and essentially all of them quasi-static with
rather unrealistic loading rules [10–14]. Some suggestive
scaling laws were found to describe size effects and damage
properties [14,15], but the relevance to real materials was

not convincingly demonstrated with a few exceptions: for
instance, percolation theory has been proposed as a the-
oretical explanation for the experimentally based Coffin-
Manson law of low cycle fatigue [16]. The interest of physi-
cists for the modeling of rupture in heterogeneous media
seems to have decreased since then except for a few active
groups.

In 1992, the first model of rupture with a realistic dy-
namical law for the evolution of damage was introduced. It
was initially formulated in the framework of electric break-
down under the name of the “thermal fuse model” [18] :
when subjected to a given current, a fuse heats up due to a
generalized Joule effect and eventually breaks down when
its temperature reaches the melting threshold. Later, it
was reformulated in [19] by showing that it is exactly
equivalent to a (scalar) anti-plane mechanical model of
rupture with elastic interaction in which the temperature
becomes a local damage variable. This model accounts
for space-dependent elastic and rupture properties, has a
realistic loading and produces many growing interacting
micro-cracks with an organization which is a function of
the damage-stress law. It was found that, under a step-
function stress loading, the total rate of damage, as mea-
sured for instance by the elastic energy released per unit
time, on average increases as a power law of the time-to-
failure. In this model, rupture was indeed found to occur
as the culmination of the progressive nucleation, growth
and fusion between micro-cracks, leading to a fractal net-
work, but the exponents were found to be non-universal
and a function of the damage law. This model has since
then been found to describe correctly the experiments on
the electric breakdown of insulator-conducting compos-
ites [20]. Another application of the thermal fuse model
is damage by electro-migration of polycrystalline metal
films [21]. See also [19] for relations with dendrites and
fronts propagation.

In 1991–1995, it was proposed and tested on a real en-
gineering composite structure the concept that failure in
fiber composites may be described similarly, namely that
the rate of damage would exhibit a “critical” behavior [22].
This critical behavior corresponds to an acceleration of
the rate of energy release or to a deceleration, depending
on the nature and range of the stress transfer mechanism
and on the loading procedure. Based on general consid-
eration on the nature of the experimental signatures of
critical rupture, it was proposed that the power law be-
havior of the time-to-failure analysis should be corrected
for the presence of log-periodic modulations [22] as sig-
natures of a hierarchy of characteristic scales in the rup-
ture process. This method is now been used by the French
Aerospace company Aérospatiale-Matra on pressure tanks
made of kevlar-matrix and carbon-matrix composites em-
barked on the European Ariane 4 and 5 rockets. In a nut-
shell, the method consists in this application in record-
ing acoustic emissions under constant stress rate and the
acoustic emission energy as a function of stress is fitted
by the above log-periodic critical theory [22]. One of the
parameter is the time of failure and the fit thus provides
a “prediction” when the sample is not brought to failure
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in the first test [23]. Good predictive performances have
been reported (Anifrani, private communication). Since
we now have a better understanding of the mechanisms
at the origin of the hierarchical self-organization in rup-
ture [24–26] which seems to apply to some other systems as
well [27,28], here we re-examine the critical rupture con-
cept and the evidence for the existence of log-periodic cor-
rections to scaling [22,37]. This study is based on the anal-
ysis of 7 acoustic emission recordings of 7 pressure tank
structures brought to rupture. The experiments were per-
formed at Aérospatiale-Matra Inc. according to the pro-
cedure described in [22]. The acoustic emissions recorded
during the loading phase up to rupture were made avail-
able to us. We also present preliminary tests of the predic-
tive skills, in particular using an extension of the theory
which allows us to incorporate the cross-over regime from
the non-critical to the critical regime [35].

2.2.2 The role of heterogeneities

A key parameter is the degree and nature of disorder.
This was considered early by Mogi [29], who showed ex-
perimentally on a variety of materials that, the larger the
disorder, the stronger and more useful are the precursors
to rupture. For a long time, the Japanese research effort
for earthquake prediction and risk assessment was based
on this very idea [30].

The role of heterogeneities on the nature of rupture
has been quantified using a spring-block model with stress
transfer over limited range and on the democratic fiber
bundle model [31]. The former model does not claim re-
alism but attempts rather to capture the role of limited
stress transfer and heterogeneity. The heterogeneity was
found to play the role of a relevant field: systems with
limited stress amplification exhibit a tri-critical transi-
tion [32], from a Griffith-type abrupt rupture (first-order)
regime to a progressive damage (critical) regime as the
disorder increases. This effect has also been demonstrated
on a simple mean-field model of rupture, known as the
democratic fiber bundle model [33]. In a two-dimensional
spring-block model of surface fracture, the stress can be
released by breaking of springs and block slips [31]. This
spring-block model may represent schematically the ex-
perimental situation where a balloon covered with paint
or dry resin is progressively inflated. An industrial appli-
cation may be for instance a metallic tank with carbon or
kevlar fibers impregnated in a resin matrix wrapped up
around it which is slowly pressurized [22], as we report
in this paper. As a consequence, it elastically deforms,
transferring tensile stress to the overlayer. Slipping (called
fiber-matrix delamination) and cracking can thus occur in
the overlayer. In [31], this process is modeled by an ar-
ray of blocks which represents the overlayer on a coarse
grained scale in contact with a surface with solid friction
contact. The solid friction will limit stress amplification.
The stress-strain curves for different values of the disor-
der ∆, here quantified by the width of the distribution of
initial positions of the blocks which captures the effect of

residual stresses in the material (but does not explore the
other dimensions of disorder), show a larger softening and
rounding as disorder increases. The phase diagram of the
fracturing in the (∆;Fc/Fs) plane, where Fc (resp. Fs) is
the rupture (resp. sliding) threshold shows that, for fixed
Fc/Fs < 2.9, increasing the disorder ∆ allows the system
to go from a first-order behaviour to a critical regime. The
fact that the disorder is so relevant as to create the analog
of a tri-critical behavior can be traced back to the exis-
tence of solid friction on the blocks which ensures that the
elastic forces in the springs are carried over a bounded dis-
tance (equal to the size of a slipping “avalanche”) during
the stress transfer induced by block motions. In this con-
text, we note that the importance of heterogeneity in the
context of fiber composites has also been stressed in [34].

In the presence of long-range elasticity, disorder is
found to be always relevant leading to a critical rupture.
However, the disorder controls the width of the critical re-
gion [35]. The smaller it is, the smaller will be the critical
region, which may become too small to play any role in
practice. This has been confirmed by simulations of the
thermal fuse model mentioned above [18]. The damage
rate on approach to failure for different disorder can be
rescaled onto a universal master curve [35].

Numerical simulations of Sahimi and Arbati [36] have
confirmed that, near the global failure point, the cumu-
lative elastic energy released during fracturing of hetero-
geneous solids with long-range elastic interactions follows
a power law with log-periodic corrections to the leading
term consistent with previous results [22-28]. The presence
of log-periodic correction to scaling in the elastic energy
released has also been demonstrated numerically for the
thermal fuse model [37,26] using a novel averaging proce-
dure, called the “canonical ensemble averaging”. A recent
experimental study of rupture of fiber-glass composites
has also confirmed the critical scenario [38].

These results indicate that the “critical” behavior is
not restricted to limited stress amplification but may well
pertain to a much broader class of systems. This needs
to be investigated more. In quasi-static models of rup-
ture [14,15], numerical simulations and perturbation ex-
pansions have shown the existence of three main regimes,
depending on the distribution p(x) of rupture thresholds
x. If p(x) ∼ xφ0−1 for x → 0 and p(x) ∼ x−(1+φ∞) for
x → +∞, then the three regimes depend on the rela-
tive value of φ0 and φ∞ compared to two critical val-
ues φc

0 and φc
∞. The “weak disorder” regime occurs for

φ0 > φc
0 (few weak elements) and φ∞ > φc

∞ (few strong
elements) and boils down essentially to the nucleation of
a “one-crack” run-away. For φ0 ≤ φc

0 (many weak ele-
ments) and φ∞ > φc

∞ (few strong elements), the rupture
is controlled by the weak elements, with important size
effects. The damage is diffuse but presents a structura-
tion at large scales. For φ0 > φc

0 (few weak elements) and
φ∞ ≤ φc

∞ (many strong elements), the rupture is con-
trolled by the strong elements : the final damage is diffuse
and the density of broken elements goes to a non-vanishing
constant. This third case is very similar to the percolation
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models of rupture and it has been shown that percolation
is retrieved in the limit of very large disorder [13].

2.2.3 Qualitative physical scenario

A qualitative physical picture for the progressive dam-
age of an heterogeneous system leading to global failure
emerges from all these results. First, single isolated defects
and micro-cracks nucleate which then, with the increase
of load or time of loading, both grow and multiply leading
to an increase of the density of defects per unit volume.
As a consequence, defects begin to merge until a “critical
density” is reached. Uncorrelated percolation [9] provides
a starting modeling point valid in the limit of very large
disorder [13,39]. For realistic systems, long-range correla-
tions transported by the stress field around defects and
cracks make the problem much more subtle. Time depen-
dence is expected to be a crucial aspect in the process
of correlation building in these processes. As the damage
increases, a new “phase” appears, where micro-cracks be-
gin to merge leading to screening and other cooperative
effects. Finally, the main fracture is formed causing global
failure. The nature of this global failure may be abrupt
(“first-order”) or “critical” depending of the type of het-
erogeneities influencing load transfer and stress relaxation
mechanisms. In the “critical” case, the failure of compos-
ite systems may often be viewed, in simple intuitive terms,
as the result of a correlated percolation process. However,
the challenge is to describe the transition from damage
and corrosion processes at a microscopic level to macro-
scopic failure.

3 Data and methodology

3.1 The experimental systems

The systems used in our study are spherical tanks of ra-
dius of 0.2 to 0.42 m, made of kevlar or carbon fibers
pre-impregnated in a resin matrix wrapped up around a
thin metallic liner (steel or titanium). They are fabricated
and instrumented by Aérospatiale-Matra Inc. In a typical
experiment, each tank is pressurized by increasing the in-
ternal water content at a constant pressure rate of 3 to
6 bars per second. Acoustic emission signals are recorded
from three to six acoustic transducers with resonant fre-
quency of 150 kHz, placed at equal distances on the equa-
tor. Acoustic emissions characterize rather faithfully the
irreversible motions and damages occurring within the
composites under increasing load. The acoustic emissions
were recorded by a Locan-At from Euro Physical Acous-
tics Inc, with tunings (thresholds, gains, Peak Definition
Time, Hit Definition Time, Hit Lock-out Time) adjusted
for each experiment. The output of the Locan-At is a list
of acoustic events with their time, the pressure at which
they occurred, their duration, their amplitude and a mea-
sure of their energy. In the sequel, we analyse the files
giving the energy of all recorded acoustic emission events
as a function of pressure.

Acoustic emissions are mechanical waves produced by
sudden movements in stressed materials. They occur in
a wide range of materials, structures and processes, from
the largest scale (earthquakes) to the smallest one (dislo-
cation motions). Acoustic emission has been found to be a
delicate technique to use since each loading is unique and
tests the whole structure. Contamination by noise is a real
problem. Notwithstanding the development of numerous
acoustic emission structural testing procedures [40,41],
their practical implementations for prediction purpose
have not been found reliable. The acoustic emission tech-
nique differs from most other non-destructive methods in
that acoustic emissions originate from within the mate-
rial and results from high-frequency motions, while most
methods detect existing geometrical heterogeneities. A
large body of research in the mechanical literature has
thus focused on the identification of the types of motions
that generate acoustic emissions and how their signatures
can be associated with their sources. Such sudden material
motions can be due to crack nucleation and growth, fiber-
matrix delamination, fiber rupture, etc. In the present
work, we focus rather on the global view that emerges
by analyzing the acoustic emission times series over the
whole lifetime of the pressure ramp up to rupture.

We analyse 7 acoustic emission data sets recorded dur-
ing the pressure ramp up to rupture of 7 distinct compos-
ite pressure tanks listed below in Table 1 with some of the
characteristics of the experiments. The analysis was not
performed on the raw data sets due to a number of ex-
perimental factors such as unreliable measurements, lim-
ited resolution as well as physical considerations. First, the
data was truncated in the upper and lower ends. The rea-
son for the latter is that the recordings made for very low
pressures are irrelevant to the rupture process and are un-
reliable since the low level of acoustic emissions can easily
be confused with exterior noise. This truncation was made
at 100 bars so that all recordings start at pressure larger
or equal to this value. Some data sets did not have record-
ings for such low pressures and was hence not truncated.
The upper endpoint was identified as the first point where
the maximum pressure was recorded. The data files were
changed into files of binned data using a binning equal to
the resolution of the pressure measurement, specifically 1
bar. The maximum value of the acoustic emission for each
data set has been normalized to 1 000 in order to make
the numerical treatment similar for all 7 experiments.

3.2 Theory

We have used three increasingly sophisticated mathemat-
ical formulas to model the acoustic emission time series.
The first one reads

f(p) = A+B(pc − p)z (1)

and has a priori 3 adjustable parameters, since pc is im-
posed as the time of rupture. Here, f is the acoustic emis-
sion energy recorded upon loading, i.e. increasing the pres-
sure p up to rupture which, theoretically, should occur
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at pc. The important parameters are the critical value pc

of the pressure at rupture and the exponent z (in general
negative), which quantifies the acceleration of the acous-
tic emission rate. This is the fundamental representation
of rupture seen as a critical point in the time-to-failure
analysis.

The second formula

f(p) = A+B(pc − p)z + C(pc − p)z cos(ω ln(pc − p)− φ)
(2)

contains an additional term with relative weight C/B,
describing a so-called log-periodic correction to scal-
ing [22,26]. Basically, this formula means that the power
law acceleration is modulated by downs and ups orga-
nized as a geometrical series converging to pc. In other
words, the intermittent accelerations and quiescences of
the acoustic emissions around the average power law ac-
celeration are more and more closely spaced as rupture is
approached. Mathematically, this log-periodic structures
can be represented as the real part of a correction to
scaling of the form C(pc − p)z+iω, i.e., by a complex
exponent. The imaginary part ω has the meaning of a
logarithmic angular frequency and defines the scaling fac-
tor λ = exp[π/ω] of the geometrical series of alternat-
ing peaks and troughs. The phase φ is of no consequence
as it accommodates the specific choice of the pressure
unit: ω ln(pc − p)− φ = ω ln[(pc − p)/p0] by the definition
φ = −ω ln p0. From a general view point, log-periodic os-
cillations are the hallmark of a discrete hierarchical struc-
ture obeying a discrete scale invariance symmetry [26].
Expression (2) has been proposed previously on the ba-
sis of a discrete renormalization group approach to rup-
ture [22,26]. Detailed theoretical and numerical analysis of
ensemble of interacting cracks have shown that such dis-
crete hierarchy can self-organize from a cascade of Mullins-
Sekerka instabilities [25].
The third formula

f(p) =A+B(tanh((pc − p)/τ))z + C(tanh((pc − p)/τ))z

× cos(ω ln(tanh((pc − p)/τ)) − φ) (3)

adds a new ingredient and is obtained from (2) by re-
placing pc − p by tanh((pc − p)/τ). It is based on a para-
metric representation of the numerical study of Sornette
and Andersen [35], who found clear evidence of scaling
of the macroscopic elastic modulus and of the elastic en-
ergy release rate as a function of time-to-rupture in the
thermal fuse model [18] beyond the pure critical power
law regime: this allowed them to collapse neatly the nu-
merical simulations over more than five decades in time
and more than one decade in disorder amplitude onto
a single master curve that has the following properties.
It is a pure power law like (1) close to rupture (critical
region); far from rupture where only few damage events
occur (non-critical region), it relaxes exponentially to a
constant value. The simplest functional form that cap-
tures these two regimes and interpolates smoothly be-
tween them is [tanh((pc − p)/τ)]z, which reduces to (1)
for pc − p � τ and goes exponentially to the constant 1

for pc−p� τ . The characteristic pressure τ sets the cross-
over scale between the critical and non-critical regime. The
analysis [35] was based on averages of several tens of in-
dependent samples. As shown in [37], ensemble averaging
destroys log-periodic oscillations due to the random phase
φ which can vary from sample to sample. When studying
specific realisations as performed below, these log-periodic
structures have to be considered as potentially important.
This is why we enrich the hyperbolic tangent formula with
the log-periodic corrections associated with equation (2),
so that expression (3) reduces to (2) for pc − p� τ , with
new definitions of B and C swallowing the dependence
in τ .

For each acoustic emission time series, we have anal-
ysed both the energy rate as well as its cumulative. The
rational for studying the cumulative acoustic emission as
a function of applied pressure is that taking the cumula-
tive is a low-pass filter that smoothen very significantly
the noise and usually provides better signals with higher
signal-over-noise ratio. For our purpose however, it has
been shown to reduce significantly genuine log-periodic
oscillations present in the original data [42]. We thus find
useful to perform the analysis of both the binned (en-
ergy rate) and its cumulative, which present complemen-
tary values. Since the cumulative data is a low-pass fil-
tered version of the binned data, we first use equation (1)
to fit it. The cumulative data will also be presented in
a non-parametric fashion in double logarithmic plots to
show direct visual confirming evidence of the power law
regime (1) close to rupture. The two other formulas (2)
and (3) are applied to the cumulative data where a better
performance by equation (3) would indicate the presence
of a transition from exponential to a power law increase
in the energy release rate as discussed above.

4 Analysis of the energy release rate

For the analysis of the energy release rate, a second trun-
cation was made for both the lower and upper ends of
the pressure interval. The lower endpoint was defined as
the point where the acceleration in the cumulative energy
release takes place. The size of this truncation varies con-
siderably from data set to data set. For the files containing
data all the way up to pc (data sets 1, 2, 3, 4, 6), the upper
endpoint was simply chosen as the point where the energy
release rate had its maximum, thus removing only a few
points. For the two data sets (5,7), where the last point is
far from pc, no truncation was performed.

The results were encouraging for all data sets. In
Table 1, we see the values of the physical parameters for
the best fit of each data set with equation (2). Use of
equation (1) for the energy release rate is unreliable due
to the huge fluctuations shown in Figure 1. The fits were
performed using the “amoeba-search” algorithm [43] min-
imizing the variance of the fit to the data. We stress that
all three linear variables A, B and C are slaved to the
other nonlinear variables by imposing the condition that,
at a local minimum, the variance has zero first deriva-
tive with respect to these variables. Hence, they should



168 The European Physical Journal B

Table 1. Parameter values for fits with equation (2) to the energy release rate. The fits are shown in Figure 1. All pressure
tanks are made of Kevlar composite except tank 2 which is a carbon composite.

Set # # points # fits pmin fit pc true pc plast z ω
1 ≈ 170 1 110.5 707 713 703 −1.4 5.4
2 ≈ 170 3 102.5 674 673 669 −2.1 10.5
3 ≈ 70 1 538.5 772 764 764 −0.7 4.5
4 ≈ 70 1 334.5 758 756 753 −2.0 4.9
5 ≈ 170 2 110.5 717, 738 797 713 −1.4,−1.0 10.1, 11.5
6 ≈ 180 1 136.5 738 734 734 −1.1 4.7
7 ≈ 120 1 283.5 672 797 661 −1.5 10.5

not be regarded as free parameters, but are calculated
solving three linear equations using standard techniques
including pivoting. Note, in addition, that the phase φ
in (2) is just a (pressure) unit and the coefficients A, B
and C have all dimensions of energy. The key physical
variables are thus pc, z and ω.

The corresponding plots are shown in Figure 1. The
best fit is defined as the fit with the lowest r.m.s. (root-
mean-square) as well as reasonable values for ω. Specifi-
cally, this means that we do not consider solutions with
ω
<∼ 1 and ω >∼ 14. The reason is that too large values for

ω indicates noise-fitting. This means that for data set 5
and 7, the minimum with the lowest r.m.s. was discarded
because ω = 25 and ω = 17, respectively. For data set 5,
we list the two best minima. Too small values for ω mean
that the fit is not truly log-periodic with less than one os-
cillation. The corresponding log-periodic correction to the
pure power law is thus not valid.

Table 1 shows that the log-angular frequencies ω
cluster around two values ω ≈ 5 or ω ≈ 10, cor-
responding to a frequency multiplexing (doubling), as
observed also in diffusion-limited-aggregation (frequency
doubling) [28] and in 2D-freely decaying turbulence (fre-
quency tripling) [44]. Another noticeable feature is that
the exponent is rather well defined at z ≈ −1.4 ± 0.7,
notwithstanding the well-known difficulties in estimating
critical exponents, especially in such noisy data as anal-
ysed here. The values obtained for the critical pressure pc

are all rather close to the last point in the data sets with
the exception of the second minimum for data set 5. This
means that equation (2) does a good job of parameter-
ising the data in a consistent manner for all seven data
sets. However, it does not provide the correct value for pc

when the last data point is far away from pc indicating
that the energy release rate might not be the best quan-
tity to analyze in order to obtain a predictive power. We
will hence switch to the cumulative distribution in order
to investigate this aspect as well as further test the critical
point concept.

5 Analysis of the cumulative energy release

5.1 Power laws

Due to the noisy nature of data in general and especially
the acoustic emission data analyzed here, a power law fit

Table 2. Parameter values for fits with equation (1) to the
cumulative energy released. The fits are shown in Figure 2.

Set # fit pc z tlast true pc

1 756 −1.7 713 713
2 718 −2.4 673 673
3 770 0.26 765 764
4 756 0.25 753 756
5 747 −1.6 713 797
7 666 −0.33 661 797

is not always numerically stable. The reason is the follow-
ing: if the data exhibits rather large fluctuation in the end
part, the search algorithm used in the optimization pro-
cess of the fit will not necessarily find a local minimum for
any choice of pc larger than the last point plast, driving the
search towards a choice pc < plast and thus creating a nu-
merical instability. Of the 7 data sets considered here only
4 data sets, sets 1, 2, 5, 7 achieved (a single) numerically
stable power law fit for the entire data interval (except the
part below 100 bars that has been omitted as previously
mentioned) as shown in Figure 2. Data sets 3 and 4 had to
be truncated in the lower end at a point where a change of
regime could be identified as a “kink” in the curve. Data
set 6 could not be parameterised by a power law due to
a kink in the last part of the data. In Table 2, the values
for the physical parameters pc and z are listed. We see
that only for data sets 3 and 4 the power law does a good
job of estimating pc whereas it overshoots for data sets 1
and 2. For data sets 5 and 7 where the last point is far
away from pc, only in the first case do we get a reasonable
estimate of pc.

Figure 3 provides a non-parametric visual test of the
critical point concept. We show the logarithm of the cu-
mulative energy release as a function of the logarithm in
base 10 of the distance (pc − p) /pc to the critical rupture
pressure pc determined from the fits shown in Figure 2.
While the power law regime qualified by a straight line
in this representation does not extend to many decades,
the plots shown in Figure 3 are nevertheless suggestive of
a critical point. The relative range of pressure-to-failure
(pc − p) /pc defining the critical regime is limited by the
resolution in pressure which is here no better than one bar
and thus limits the investigation of the energy release rate
closer to the rupture.

The over-all conclusion of the analysis presented
here is that a pure power law does a reasonable job
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Fig. 1. Starting from the upper left corner and reading from left to right and from top to bottom as in a book, we show the
best fit of the energy release rate with equation (2) for data set 1, 2, 3, 4, 5 (best and second best), 6 and 7. Notice how the
log-periodic oscillations allow to account for an accelerating rate of bursts on the approach of the rupture.
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Fig. 2. Cumulative energy release fitted with equation (1). Starting from the upper left corner and reading from from left to
right and from top to bottom as in a book, we have data set 1, 2, 3, ...7. Data sets 3 and 4 have been truncated in the lower
end, taking as the first point the point where the acceleration in the acoustic emission begins in a similar way as for the other
data sets. A unit of the abscissa corresponds to 100 bars.
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Fig. 3. Cumulative energy release (in ln10 scale) as a function of the logarithm (base 10) of the distance (pc − p)/pc to the
critical rupture pressure pc determined from the fits shown in Figure 2. Starting from the upper left corner and reading from
from left to right and from top to bottom as in a book, we have data set 1, 2, 3, ...7. We show the last “critical region” close
to rupture which is suggestive of a power law qualified by a straight line in this representation.
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of parameterising the cumulative data but does not seem
to provide for a predictive tool: truncating the data in
the upper end will only increase the over-shooting. We
hence have to move beyond pure power laws in order to
be able to use the cumulative energy release for predic-
tion purposes. It is not very surprising that a pure power
law fails to capture essential features of the data. Whether
one believes in log-periodic oscillations or not, the anal-
ysis presented in the previous section clearly shows that
the energy release rate is quite intermittent. The low-pass
filtering performed in calculating the cumulative energy
release have reduced these fluctuations to a large extent
but clearly not enough. Secondly, it is clear that a trunca-
tion of the data in the lower end is necessary in order to
identify the transition point to a power law acceleration.
In fact, the identification of this transition point between
random and cooperative behavior may very well be the
crux when it comes to predictability.

We will thus investigate whether equations (2, 3) do
a better job of parameterising the cumulative data. The
rationale behind the last extension to equation (3) is that
we cannot hope for a prediction capability if we cannot to
a reasonable extent capture the features of the full data
set which contains a transition in the acceleration of the
energy release rate.

5.2 Beyond pure power laws

5.2.1 Fit with equation (2)

It is well-known that calculating the cumulative of some
quantity effectively corresponds to performing a low-pass
filtering thus diminishing fluctuations in the data. How-
ever, it will not completely remove them and thus a residue
of the oscillations found in Section 4 should still be present
in the data. Furthermore, adding an extra degree of free-
dom in the equation to be fitted will remove the problem
with the numerical instability, since by the very nature
of the experiments the fluctuation around some average
behaviour will be slower for low pressures and more rapid
for higher pressures. Equations (2, 3) exactly takes such
a behaviour into account. This means that from a purely
technical perspective, equations (2, 3) offers significant ad-
vantages to equation (1).

In Figure 4, we see the fits of 6 of the 7 data sets with
equation (2). Whereas the fits with equation (1) in all
cases only provided us with a single fit (or in the case of
data set 6 none), we now have several solutions per time
series. The fits shown in Figure 4 and the corresponding
parameter values listed in Table 3 are those of the best fit
which fulfills the criteria previously given. Data set 2 did
not give any such fits, since ω � 1 for all of them.

5.2.2 Fit with equation (3)

As previously mentioned, a transition point exists where
the acceleration in the energy release rate increases sig-
nificantly. Standard theoretical arguments from critical

Table 3. Parameter values for fits with equation (2) to the
cumulative energy released. The fits are shown in Figure 4.

Set # # fits fit pc true pc tlast z ω
1 2 760 713 713 −1.7 13.0
3 2 774 764 765 0.13 6.0
4 3 757 756 755 0.23 5.0
5 3 734 797 713 −1.2 8.9
6 4 759 734 736 −0.98 2.4
7 2 669, 668 797 661 −0.42,−0.43 3.1, 8.6

phenomena [45] suggest that the acceleration is approx-
imately exponential before the transition point and goes
to a power law after the transition point up to the critical
point, hence defining the so-called critical region. As a jus-
tification of equation (3), we stress that such a cross-over
has already been studied in detail in a numerical model of
rupture [35]. We thus propose that equation (3) might pro-
vide a better fit of the data sets without the need of trun-
cation as was the case in Section 4. By using equation (3),
we are introducing an additional parameter, the typical
width τ of the critical region, and a better fit is thus ex-
pected. However, if we also get a better estimate of pc and
a better predictive power, we can argue that this transition
in the acceleration is indeed captured by equation (3).

Figures 5 and 6 show the fits of the seven data sets
with equation (3). Sets 1–4 and 6 have one acceptable so-
lution while two solutions are given for data sets 5 and 7.
There are more solutions but most can be discarded or ag-
gregated. The reason for the large number of minima for
data sets 3, 4 and 7 is due to a degeneracy with respect
to the new parameter τ , when the number of data points
is small (72, 73 and 119 respectively). Thus, in these data
sets, τ is not constrained well. If one insists that two so-
lutions are identical if they have approximately the same
values for ω and z, then the number of minima are reduced
to approximately 15, 11 and 5. For data set 5, the best so-
lution is shown together with the solution which had ω
closest to 2π, a value that has been found repeatedly in
previous works [25,27,28] and argued to be close to the
universal mean field value [26]. For data set 7, the best
solution is shown together with the only solution which
did not have pc close to plast.

Comparing the results presented in Tables 3 and 4,
a major improvement is obtained for data sets 1 and 2
by using equation (3) compared to equation (2). For data
sets 3, 5 and 7, the improvement is minor while, for data
sets 4 and 6, we get the same solutions. Hence, the overall
conclusion is that equation (3) better captures important
features in the data and supports the idea of a transition
in the acceleration of the energy release rate from expo-
nential to power law.

6 Prediction of the critical pressure of rupture

Armed with these empirical tests of the concept of criti-
cal rupture, prediction should in principle be possible by
extrapolation of the acoustic emission data using the the-
oretical formulas. This scheme is similar to that proposed
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Fig. 4. Cumulative energy release fitted with equation (2). Starting from the upper left corner and reading from from left to
right and from top to bottom as in a book, we have data set 1, 3, 4, 5, 6, 7 (first minimum) and 7 (second minimum). Data sets
3 and 4 have been truncated in the lower end, taking as the first point the point where the acceleration in the acoustic emission
begins to be similar to the other data sets.
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Fig. 5. Cumulative energy release fitted with equation (3). Starting from the upper left corner and reading from from left
to right and from top to bottom as in a book, we have data set 1, 2, 3, 4, 5, 6, 7 (first minimum). Data sets 3 and 4 have
been truncated in the lower end, taking as the first point the point where the acceleration in the acoustic emission begins to be
similar to the other data sets.
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Table 4. Parameter values for fits with equation (3) to the cumulative energy released. The fits are shown in Figures 5 and 6.

Set # # fits fit pc true pc tlast z ω τ
1 3 727 713 713 −0.57 8.6 1.8
2 1 705 673 673 −1.7 13.4 1.4
3 33 767 764 765 0.52 4.5 1.0
4 15 757 756 755 0.23 5.0 428
5 4 728, 743 797 713 −0.8,−1.1 8.7, 6.7 1.9, 1.9
6 4 759 734 736 −0.98 2.4 124
7 17 668, 699 797 661 −0.33,−1.3 3.0, 4.4 2.3, 1.9
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Fig. 6. Second solution of the cumulative energy release of
data set 7 fitted with equation (3).

by Voight to describe and predict rate-dependent material
failure [46], based on the use of an empirical power law re-
lation supposed to be followed by an observable variable.
However, Voight’s procedure is impractical due to the nar-
rowness of the domain of validity of the pure power law,
preventing a realistic implementation of the prediction.
This will be confirmed by our tests presented below with
equation (1). In order to extend the domain of validity be-
yond the rather narrow critical region, we are then going
to test for the predictive merits of equations (2, 3).

The question we now address is whether we can use
equations (1–3) in order to predict from the value of pc

the approximate value of the pressure at rupture. Data
sets 5 and 7 being incomplete, i.e., having acoustic emis-
sions recorded up to a value plast far from the pressure
at rupture (11% below pc for data set 5 and 17% below
pc for data set 7), this prediction question has already
been answered to some extent. For data set 5, equation (1)
gave just as good result as equation (3), the result with
equation (2) being slightly worse. Choosing the second so-
lution for equation (3), the estimate of pc in these three
cases was obtained with an error of 6%, 9% and 7%, re-
spectively. For data set 7, equations (1) and (2) only gave
solutions with pc ≈ plast, the usual signature that the pre-
diction is not reliable because it is controlled by the very
last acceleration. In contrast, equation (3) produces a bet-
ter solution with an error of 12% which can be compared
with the difference of 17% between pc and plast.

Table 5. Summary of the predicted critical pressures
and comparison with the true pressure at rupture using
equation (1) on the seven pressure tanks.

Set # fit pc true pc tlast z
1 749 713 705 −1.5
1 739 713 707 −1.3
1 739 713 709 −1.3
3 819 764 742 −0.02
3 750 764 746 0.67
3 753 764 751 0.60
3 755 764 753 0.58
3 758 764 756 0.50
3 764 764 759 0.39
3 769 764 761 0.29
3 770 764 763 0.27
4 809 756 744 −0.64
4 754 756 748 0.30
4 772 756 751 −0.05

Since the results for data set 7 using the entire data
set are not very good (presumably because plast is so far
away from pc), it does not seem reasonable to include this
data set in a prediction scheme. Of the remaining data
sets, the first prediction attempt for data set 1 was made
for p ≈ 676, for data set 2 it was 629, for data set 3 it was
742, for data set 4 it was 733, for data set 5 it was 687 and
for data set 6 (which had no solutions for Eq. (1)) it was
688. These truncations were based on purely numerical
consideration, i.e., how many data points can one afford
to remove without severely increasing the degeneracy of
the cost-function used in the optimization of the fit. As a
consequence, a maximum of 30 points were removed from
the larger data sets (≈ 170 points for data sets 1,2,5 and 6)
and 20 points from the smaller data sets (≈ 70 for data
sets 3 and 4).

As we can see from Table 5, the prediction performance
of equation (1) is quite bad and only data set 3 gives
something interesting.

In Tables 6–11, we see the corresponding results us-
ing equation (2). Again the prediction performance is not
good.

In Tables 12–17 we see the corresponding results using
equation (3). When two solutions are given, the first is the
best fit and the second is the best fit with ω closest to 2π.
If two fits have ω’s approximately at the same distance
from 2π then both are listed. If only one fit is listed, then
ω of this fit was also closest to 2π. We also demand that
pc is not very close to plast. The reason for including these
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Table 6. Same as Table 5 with equation (2) on the pressure
tank 1.

Set # # fits fit pc true pc tlast z ω
1 1 947 713 684 −1.6 5.1
1 1 922 713 689 −0.75 3.1
1 1 939 713 698 −0.48 1.4
1 2 728 713 705 −0.96 7.8
1 1 756 713 707 −1.7 12.2
1 1 757 713 709 −1.7 12.4

Table 7. Same as Table 5 with equation (2) on the pressure
tank 2.

Set # # fits fit pc true pc tlast z ω
2 1 658 673 651 −0.03 1.5
2 3 667 673 653 −0.43 1.8
2 1 656 673 655 −0.22 1.4
2 1 668 673 657 −2.1 2.6
2 1 668 673 657 −2.1 2.6
2 1 776 673 661 −2.5 3.3
2 2 795 673 664 −2.7 3.9

Table 8. Same as Table 5 with equation (2) on the pressure
tank 3.

Set # # fits fit pc true pc tlast z ω
3 3 755 764 746 0.62 13.0
3 5 757 764 751 0.63 12.6
3 5 757 764 753 0.54 13.8
3 3 762 764 756 0.37 5.0
3 1 823 764 759 −0.77 10.6
3 1 797 764 761 −0.29 8.4
3 1 774 764 761 0.12 6.0

Table 9. Same as Table 5 with equation (2) on the pressure
tank 4.

Set # # fits fit pc true pc tlast z ω
4 2 738, 748 756 737 0.85, 0.59 3.3, 4.8
4 1 775 756 739 0.20 8.1
4 1 752 756 741 0.57 5.1
4 4 756 756 744 0.40 6.1
4 2 780 756 748 −0.16 10.4
4 2 769 756 751 −0.09 8.5

Table 10. Same as Table 5 with equation (2) on the pressure
tank 5.

Set # # fits fit pc true pc tlast z ω
5 1 815 797 694 0.31 11.1
5 3 709, 724 797 703 −0.71,−0.92 1.8, 7.3
5 2 745 797 705 −2.4 3.2
5 1 723 797 707 −0.85 7.3
5 2 721 797 709 −0.79 7.1

Table 11. Same as Table 5 with equation (2) on the pressure
tank 6.

Set # # fits fit pc true pc tlast z ω
6 1 737 734 690 −1.9 2.9
6 1 744 734 692 −2.4 2.9
6 2 936 734 711 −2.4 4.5
6 2 925 734 716 −2.0 4.3
6 4 924 734 719 −2.7 4.6
6 1 810 734 723 −0.88 2.9
6 1 802 734 726 −0.92 2.8
6 1 792 734 729 −0.60 2.7

additional fits is to illustrate whether one always get a
solution with a pc close to the true pc or not.

As mentioned, numerical degeneracy of the cost-
function used in the optimization of the fit with
equations (2, 3) can be a problem when the number of data
points is not large. Hence, we have recorded the predicted
pc as a function of plast for all fits with equations (2, 3)
obeying the constraints on ω previously mentioned. The
results are shown in Figures 7 and 8. Whereas no pattern
can be identified using equation (2) we do see a cluster-
ing around the true tc using equation (3) for all data sets
except 6.

7 Conclusion

Considering the limited quality of the data recorded in a
sub-optimal industrial environment, it is quite interesting
that a reasonably clear picture has emerged from the anal-
ysis presented here. Beginning with the log-periodic anal-
ysis of the energy release rate, it is remarkable that the
parameter values for the exponent z and log-periodic an-
gular frequency ω obtained from the fits with equation (2)
to the 7 first data set actually agree on z ≈ −1.4±0.7 and
ω ≈ 5 or ω ≈ 10 corresponding to a frequency doubling
as seen in Table 2. Furthermore, from Figures 2 and 3,
it is clear that at least 6 of the data sets exhibit an av-
erage power law acceleration as p → pc. The consistent
results obtained for the energy release rate with respect to
log-periodic oscillations is reasonably confirmed by the re-
sults obtained with equation (3), see Table 4 and Figures 5
and 6. Comparing these results with those obtained with
equation (2) suggest that the cumulative energy release
does exhibit a transition from an approximately exponen-
tial increase to that of a power law, in agreement with
the numerical simulations of Sornette and Andersen [35].
Additional support for such a transition comes from the
better predictions results obtained using equation (3) in-
stead of equation (2).

The general results for the predictive power of equa-
tions (1–3) is that the first two equations do not perform
at all. The results with equation (3) are more positive. For
data set 1, we get a suggestion for pc ≈ 720 bars already
at plast ≈ 682 bars while the true rupture occurred at 713
bars. For data set 2, we start to get a reasonable stable
estimate pc ≈ 680−90 bars for plast ≈ 651 bars with some
prior indications down to plast ≈ 621 bars, while the true
rupture occurs at 673 bars. For data set 3, the results are
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Table 12. Same as Table 5 with equation (3) on the pressure tank 1.

Set # # fits fit pc true pc tlast z ω τ

1 1 850 713 678 −2.4 5.6 530

1 2 761, 831 713 680 −1.4,−1.7 11.4, 5.6 1.7, 5.8

1 1 723 713 682 −0.45 6.9 1.7

1 5 732, 714 713 684 −0.07,−0.09 9.4, 6.8 1.4, 1.5

1 2 733, 728 713 687 0.14, 0.15 10.3, 9.3 1.4, 1.4

1 3 702, 1070 713 689 0.19,−2.4 5.1, 5.4 1.6, 24

1 4 738, 1093 713 691 0.10,−2.2 11.1, 5.1 1.4, 32

1 3 859, 730 713 698 0.75,−1.6 1.0, 2.8 6.8, 10

1 3 763 713 701 −2.4 4.3 10.0

1 1 711 713 703 −2.4 5.7 1.8

1 9 711, 713 713 705 −0.14,−0.17 5.3, 5.8 2.0, 1.7

1 5 712 713 707 −0.17 5.5 2.0

1 6 715 713 709 −0.24 6.2 1.9

Table 13. Same as Table 5 with equation (3) on the pressure tank 2.

Set # # fits fit pc true pc tlast z ω τ

2 1 690 673 629 −2.6 2.6 6.8

2 3 726, 682 673 631 0.51,−1.5 1.3, 2.5 2.4, 8.9

2 1 693 673 633 −1.1 2.5 6.2

2 4 752, 672 673 635 0.49,−2.5 1.3, 3.2 2.4, 7.5

2 3 735, 762 673 638 0.26,−2.9 2.7, 3.5 2.3, 44

2 2 756 673 640 −2.4 3.3 16.0

2 2 866, 683 673 644 −1.7,−2.8 2.2, 3.4 3.1, 9.5

2 1 722 673 648 −1.7 2.7 13

2 4 657, 696 673 651 0.08,−2.1 1.5, 2.5 18, 13

2 4 657, 689 673 653 0.50,−1.6 1.5, 2.5 2.8, 9.0

2 4 659, 747 673 655 −0.43,−2.7 1.8, 3.9 3.5, 5.2

2 2 678, 766 673 657 −2.1,−2.2 2.6, 3.1 887, 63

2 3 685 673 659 −1.8 3.2 3.5

2 9 695, 697 673 664 −2.6, 2.8 3.0, 3.1 67, 69

Table 14. Same as Table 5 with equation (3) on the pressure tank 3.

Set # # fits fit pc true pc tlast z ω τ

3 8 898, 825 764 741 −2.7,−2.1 13.3, 6.8 227, 7.2

3 13 877, 803 764 744 −2.1,−1.0 13.4, 6.4 572, 8.1

3 8 752, 807 764 748 0.62,−1.2 12.0, 6.6 120, 4.7

3 8 758, 770 764 752 0.63, 0.44 4.0, 6.2 1.0, 1.3

3 2 760, 782 764 755 0.41, 0.09 4.9, 6.7 4.7, 1.8

3 2 863, 784 764 757 −1.60.12 13.2, 6.3 951

3 8 796, 784 764 760 −0.03,−0.04 9.0, 6.9 1.6, 6.5

3 2 772, 776 764 762 0.26, 0.09 5.6, 6.1 1.7, 27
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Table 15. Same as Table 5 with equation (3) on the pressure tank 4.

Set # # fits fit pc true pc tlast z ω τ

4 13 736, 752 756 733 0.86, 0.42 3.1, 5.9 2.4, 474

4 11 739, 758 756 735 0.78, 0.32 3.5, 6.7 52, 165

4 12 751, 760 756 737 0.63, 0.34 5.6, 6.7 1.8, 87

4 22 781, 767 756 739 0.16, 0.36 9.5, 7.0 3.3, 4.5

4 32 763, 759 756 741 0.79, 0.40 8.6, 6.2 1.1, 373

4 12 756, 759 756 744 0.40, 0.35 6.1, 6.4 428, 354

4 10 780, 758 756 748 −0.16, 0.30 10.3, 6.3 924, 16

4 10 769, 758 756 751 0.09, 0.30 10.3, 6.3 924, 16

Table 16. Same as Table 5 with equation (3) on the pressure tank 5.

Set # # fits fit pc true pc tlast z ω τ

5 3 751, 717 797 687 −1.3, 0.06 13.6, 7.5 1.4, 1.5

5 3 739, 798 797 689 −0.08,−2.9 11.2, 8.6 1.4, 148

5 4 732, 762 797 691 −0.03,−2.5 9.8, 5.2 1.4, 11

5 3 705, 773 797 694 0.09,−2.4 5.6, 7.2 1.6, 2.9

5 1 765 797 698 −2.0 6.5 2.8

5 2 752, 758 797 701 −0.61,−2.1 11.1, 4.7 1.5, 4.6

5 10 710, 718 797 703 −1.8,−0.57 5.5, 6.2 2.0, 2.3

5 7 710, 722 797 705 −0.22,−0.85 5.1, 7.0 2.1, 12

5 7 712, 713 797 707 −0.28, 0.31 5.5, 5.9 2.1, 1.9

5 9 715 797 709 −0.38 6.2 2.0

Table 17. Same as Table 5 with equation (3) on the pressure tank 6.

Set # # fits fit pc true pc tlast z ω τ

6 4 722, 745 734 688 1.3,−1.5 13.7, 5.3 1.1, 1.5

6 2 741, 867 734 690 −2.3,−2.8 2.8, 5.0 35, 897

6 7 763, 762 734 692 −1.4,−2.0 6.9, 6.1 1.6, 1.6

6 4 776 734 696 −2.0 6.7 1.9

6 4 724, 761 734 700 0.94,−2.2 12.2, 3.4 1.2

6 2 770 734 702 −2.8 3.3 7.5

6 7 729, 782 734 705 0.81,−2.4 12.4, 4.9 1.2, 3.0

6 2 722, 790 734 708 0.76,−2.0 10.6, 5.4 1.3, 3.5

6 6 746, 978 734 711 0.66,−2.6 11.1, 6.4 1.3, 6.1

6 7 753, 820 734 713 0.67,−2.7 12.8, 5.2 1.3, 5.6

6 6 730, 812 734 716 0.86,−2.3 12.9, 4.7 1.2, 5.5

6 8 839, 914 734 719 2.2,−2.0 3.3, 5.0 2.6, 6.2

6 7 921 734 723 −1.8 6.0 4.5

6 20 759, 892 734 726 1.0,−2.7 2.0, 4.4 2.9, 5.6

6 13 883 734 729 −1.8 4.9 4.0

6 13 785, 889 734 732 1.6,−0.03 2.4, 6.1 2.5, 3.0
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Fig. 7. Compilation of all predicted pc as a function of plast using equation (2). The straight line represent the true pc.

not very convincing, as we get good solutions only close to
the true pc. It is interesting to note that if we only consider
solutions with ω ≈ 2π, then we get a good estimate for
plast ≈ 752 bars while the true rupture occurs at 756 bars.
Remarkably, the same is true for data set 4 all the way
down to the lowest pressure of ≈ 733 bars used, while the
true rupture occurs at 756 bars. Data set 5 is as mentioned
incomplete, the last point being ≈ 85 bars away from pc.

For this data set, we get a reasonable estimate on pc if we
focus on solutions with ω ≈ 2π for plast in the range of
689− 701, while the true rupture occurs at 791 bars. For
higher pressures, the fits lock on pc close to the last point
in the untruncated data set. The results for data set 7 are
very mixed without any clear pattern.

As seen in Figure 8, using all fits shows that a pre-
dictive potential of equation (3) exists since a clustering
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Fig. 8. Compilation of all predicted pc as a function of plast using equation (3). The straight line represent the true pc.

of the predicted pc’s occurs around the true pc for all data
sets except one (data set 7). This suggests that for a bet-
ter controlled experimental situation, a reliable prediction
procedure based on equation (3) can be achieved.
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